Beatriz Luna Murillo

PhD Candidate

Employed since: November 2015
4th floor open office

Bio-oil to chemicals and fuels: (in situ) catalyst deactivation studies at multiple length scales

Lignocellulosic (pyrolytic) bio-oils are particularly attractive as bio-based feedstock for the production of both fuels and chemicals, as these liquids are dense and transportable and they can be produced from biomass in one-step process. One of the most advantageous ways of bio-oils to fuels conversion is by co-feeding the bio-oil in a conventional fluid catalytic cracking process (FCC), but at present this approach suffers from reduced gasoline production and increased coking. Alternatively, the bio-oil can be catalytically upgraded to commodity chemicals such as olefins and aromatics (e.g. BTX), a process that at present also suffers from catalyst deactivation and limited selectivity.

In this project, our purpose is to study in detail catalyst deactivation for these two processes by means of fluidized bed reactor model setup which combines experimental and spectroscopic approaches allowing us the in-situ monitoring of the catalytic process and the in-situ study of catalyst deactivation with vibrational and spectroscopic techniques.