Laurens Mandemaker

PhD candidate

Employed since: September 2016
David de Wied 4th floor study area

Surface nanobubbles are nanoscopic gaseous objects, which are formed mainly on hydrophobic surfaces. Although many catalytic processes taken place at the solid-liquid-gas interface, the implications of surface nanobubbles in the field of heterogeneous catalysis are totally not explored. A prominent example where surface nanobubbles may play a role is the catalytic hydrogenation of biomass-derived chemicals. In this project, we will develop a high-temperature, high-pressure Atomic Force Microscopy (AFM)-Vibrational Spectroscopy set-up to investigate the one pot hydrogenation reaction of levulinic acid into pentanoic acid over Ru/H-ZSM-5. To enable a detailed AFM investigation large coffin-shaped ZSM-5 crystals will be investigated and the presence and properties of the surface nanobubbles will be studied as a function of the surface roughness and Si/Al ratio (i.e., changing surface hydrophilicity). The latter will be realized by applying different post-treatments, while altering the hydrogenation conditions may affect the stability of the formed surface nanobubbles.